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Suppression of the residual water signal from proton magnetic
resonance (MR) spectra recorded in human brain is a prerequi-
site to an accurate quantification of cerebral metabolites. Several
postacquisition methods of residual water signal suppression have
been reported but none of them provide a complete elimination of
the residual water signal, thereby preventing reliable quantification
of brain metabolites. In the present study, the elimination of the
residual water signal by the Hankel Lanczos singular value decom-
position method has been evaluated and optimized to provide fast
automated processing of spectra. Model free induction decays, re-
producing the proton signal acquired in human brain localized MR
spectroscopy at short echo times (e.g., 20 ms), have been generated.
The optimal parameters in terms of number of components and di-
mension of the Hankel data matrix allowing complete elimination
of the residual water signal are reported. © 2001 Academic Press

Key Words: STEAM localized proton spectroscopy; water signal
removal; HLSVD method.

INTRODUCTION

Accurate quantification of cerebral metabolitesrbyivopro-

ton magnetic resonance spectroscopy (MRS) is essential to
study of many brain disorders. In the spectra acquired at sh{%r

echo times (e.g., 20 ms) with the stimulated echo acquisitiglfut
mode (STEAM) localized MRS sequence, the residual water
signal distorts the signals of several metabolites and prevep,
their accurate quantification. As a consequence, adequate wa

signal suppression remains a key and pending issue in the rgy-
tine use of proton MRS to investigate human brain metabolis&b

in a clinical context.

Several methods have been developed to suppress the W%
signal before acquisitionl( 2), but the results are not satis-
factory. One of the problems inherent to these methods is
achieve complete elimination of the water resonance witho'Lét
altering the metabolite signals of interest. As a compromis

due to magnetic field inhomogeneities and lineshape distortion
caused by the water signal suppression sequence, the rest
ing water resonance proves very difficult to parameterize. Mos
of the postacquisition methods are based on bandpass filterir
(3-5H or consist of subtracting the solvent signal calculated by
either decomposition methodd13 or nonlinear least-squares
methods {4). In addition, frequency domain filterind.§) or
baseline correctionl@) by fitting the water spectral region by
a polynomial function has been proposed. All of these method
remove the residual water resonance but are limited by crude a
proximations regarding the fitting of the water resonance hump:
Pijnappekt al (9) have developed the Hankel Lanczos singu-

lar value decomposition (HLSVD) method in the time domain.
With this method, Van den Boogaat al. (11) have reported a
satisfactory elimination of the residual water resonance from .
proton MR brain spectrum. The HLSVD water signal removal
protocol is based on a choice of parameters such as the numt
of exponentially damped sinusoids and the size of data sets f
fitting the entire signal. To our knowledge, no study has been de
voted so far to the determination of the optimal values of all the

arameters to be selected in the implementation of the HLSVI

gthod, particularly with the goal of processing quickly and au-

atically short echo time human brain spectra. The objectiv
he present study was to determine the best values of the p
meters, which afford an adequate removal of the residual wat:
nal under the spectrum of brain metabolites. Under those o}
zed conditions, an accurate quantification of metabolites ir
& proton MR spectra of the human brain has become poss
Free induction decay (FID) models have been generated
st reproduce the proton MR signals acquired in human brai
Alized spectroscopy at short echo times and also the represe
tative lineshape of the residual water signals obtained on clinice
I/IMRS systems. Large data sets representatiirevaolow-
solution brain spectra with limited signal-to-noise ratio were
gnalyzed.

either the signals of metabolites close to the water signal are

reduced or a significant residual water signal remains on the
spectrum. In both cases, quantification of brain metabolites is
inaccurate because of baseline distortion due to the residual wa-
ter signal. Alternatively, numerical methods have been designedVodel signals in the time domain were generated on the bz
to remove the residual water signal after acquisition. Howeveis of actuain vivo human brain proton MR spectra recorded
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at 1.5 T on a Siemens Magnetom SP63 using a STEAR) ( N-acetyl aspartate
sequence (20-ms echo time, 30-ms mixing time, 1024-ms a
quisition time, and 1.5-s repetition time) combined with a wate
suppression sequence using chemical shift selective excitati
(CHESS) pulses.

Glutamate
Glutamine

Metabolite Signals Phosphocreatine / Creatine

Based on actuain vivo human brain proton MR spectra Choline
recorded orlNgata data points, signals of metabolites have bee
modeled using 19 exponentially damped sinusoids which corr
spond to the number of principal metabolite components in tF™einesitol - ——— ‘

Taurine / scyllo-inositol

+ glycine

spectra recorded on human brain as LIPIDS
19 ) )
FIDmetabolitdN) = Z Ake”ﬂke(*akvLZﬂIUk)nA'[
. [1]
n=1,..., Ngata At =1 ms
[ T T T T 1
5 4 3 2 1 0

The modelfunction describes the sum of MR signaldheing ppm
the amplitudeyy the frequencyyy the damping factors, ang,
the phase of each sign®lg,tais the number of data points on themetalbolite resonances between 0 and 4 ppm.
FID. The parameters used to define the reference model signal of
metabolites are listed in Table 1. The corresponding spectrum

displayed in Fig. 1.

FIG.1. Realpartofasimulated human brain proton MR spectrum showing

TABLE 1

FIDetanolite Simulation Parameters Calculated from the Fit
of in Vivo Human Brain Proton MR Spectra

The use of CHESS pulses, usually imposed on clinical
MRI/MRS systems, largely distorts the residual water lineshape
Van den Boogaast al. (11) proposed to describe the water res-
onance with 3 to 10 exponentials, but they reported that only :
seem to be really significant. From a large set of different line-
shapes acquireith vivo, we modeled the residual water signal

Uk Ax oK o with a linear combination of 4 to 6 exponentials in most cases
Peak (Hz) (au) (Hz) 90 We constructed 15 different lineshapes of residual water sig
1 47 0.068 53 0 nal (FIDyateri, | = 1 to 15). The first groupi(= 1 to 5) was
2 _56 0.086 8.0 0 constructed with the sum of 4 exponentials, the second grou
3 —63 0.058 4.6 0 (i = 6 to 10) with 5 exponentials, and the third group=11
4 —70 0.071 4.6 0 to 15) with 6 exponentials. Figure 2 shows the five typical line-
5 —82 0.024 4.6 0 shapes of residual water spectrum within the second group.
6 -92 0.118 6.4 0
7 —-103 0.12 4.6 0
8 -113 0.005 2.3 0 Model Signals
9 -121 0.011 4.0 0 . ) o
10 _128 0.099 8.0 0 Model FIDs have been obtained as a linear combination o
11 —-138 0.039 4.6 0 signals of water, metabolites, and noise as
12 —145 0.068 8.0 0
13 —153 0.094 8.0 0
14 —160 0.128 6.4 0 FIDmodel = & X FIDwateri + 8 X FIDmetabolite+ ¥,  [2]
15 —167 0.173 4.0 0
16 —191 0.033 15.0 0 _ _ . .
17 —200 0.186 22.0 0 wherex designates the amplitude factor of residual water contri-
18 —228 0.219 33.0 0 bution FIDyaei (i standing for theth residual water modelj
19 —236 0.169 23.0 0

Note.Exponentially damped sinusoids are characterized by amplittidas
arbitrary units (au). Frequencieg and damping factorsg are given in hertz

and phaseegy in degrees.

the amplitude factor of metabolite contribution, ahdhe noise.
Values of parameteks = 45 andp such that 0.5< g < 2.5

were selected to obtain spectra with metabolite signal to residus

water signal ratios in the range of the ratios measimedvo.
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FIG.2. Realpartofthe spectrum of five residual water model obtained with five exponentially damped sinusoids. Each residual water resonance is¢thara
by a typical lineshape.

The white gaussian noisg, in the time domain, was chosenstructed as follows:
with a zero mean value and a standard deviatioanging be-

tween 0.005 (arbitrary unit) and 0.05 (arbitrary unit). The noise Xoo X ... XM-1
standard deviation was calculated on a spectrum region devoid X = X1

of metabolite signals, measured on an actual brain spectrum. In e e
the case of the inositol signal at70 Hz, witha =0, 8 = 1, AN-M eee e XN

o = 0.025, a signal-to-noise ratio equal to 4 (signal height

SD of frequency noise) was obtained on the Fourier transformThe HLS.\./D e_llgonthm IS a_pphed to trvemgtnx, f"md. aS|gn§I
of the FIDoger decomposition ik exponentially damped sinusoids is obtained

(9, 11, 18.
Ideally, the FID signal is noiseless and results exactly fror
Residual Water Signal Removal by the HLSVD Method the addition ofK exponentially damped sinusoids, which are
The Hankel Lanczos singular value decomposition methodclga;?]gterr'];id by ngp“tUd@ﬁ;" frequenciesy, damping factors
a so-called “black box” method which estimates the whole s&¢ &1 PNasedk,

of parameters of the model by making full use of the mathe-

K
matical characteristics of the model function. This is done via X, = >~ Ai@#el-act2mivnat n—1 N, [3]
an algorithm based on matrix algebra allowing singular value k=1
decompositiong).
From N data pointsx, of a signal and withM <N, a In order to remove the residual water signal, the exponentiall

(N— M + 1) x M data matrix with a Hankel structure is con-damped sinusoids whose frequencies are located in the wat
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NOISE (G')

HLSVD + FIDreconstruct
——@—»{+ METHOD
FIDwater,i 3 FIDmodel (KN, M) FIDyater/HLSVD
I FIDmetabolite

TIME DOMAIN
Y SPEmetabolite
FREQUENCY DOMAIN

FIG.3. Signal processing protocol. In the time domain, filaeis obtained as a linear combination of R4, FIDmetanolits 2nd noise. The HLSVD method
is then applied to evaluate the residual water signa|,E\D: /i syp- Then the FIRsconstructS obtained. The accuracy of residual water signal removal by HLSVD
method is finally evaluated in the frequency domain.

region are selected and subtracted from the original FID. Thexgarch System, Inc., Boulder, CO) and HLSVD-MRUI FOR-
this new signal (FIRconstrud Can be processed by fast FourieTRAN code (www.mrui.uab.es/mrui) on a O2 Silicon Graphics
transform or by any other appropriate methods for quantitativerkstation. Various HLSVD parameters have been applied t
analysis. alarge number of model data in order to analyze each decompt
With noisy FID signal, the crux of the method lies in thesition and quantify the extent of residual water signal removal
formation of the Hankel matriX extracted from the acquired A typical experiment involves a set of values of the HLSVD
data points Ngato), i.€., in the choice of the values bfandM. parametersK, N, andM), a set of values of the FIR4e pa-
In addition, the choice of total model orderis critical. rameters ¢, i, 8, ando), and 100 different noise realizations
To our knowledge, no exact analytical theory exists current{yT mogel = 100). The water region was selected betweeltd
that gives the optimal values of ti¢ M, andK parameters, and—40 Hz. The metabolites of interest generated resonance
for any kind of spectrum (with low- and/or high-resolution sigrange from—47 to —236 Hz (Table 1) in the spectrum. The
nals), any value ofNya, and any SNR level. There only existprotocol is summarized in Fig. 3.
approximated analytical theorie$q, 20 based on high SNR
!evel and applleq only to one single expone'ntlal. These theo.rﬁt?'curacy of Residual Water Removal by the HLSVD Method
ical approximations have always been validated by numerica
simulation and the authord g, 20 had identified that require-  In order to take numerical breakdown of the HLSVD method
ment very early. In several studiek (L1, 21, differentempirical into account, routines have been inserted in the program t
rules have been proposed to select the optimal values of the pantrol some floating point exceptions errors (overflow, divi-
rameters. These rules are often inaccurate; they lack an exaoh by zero, invalid operation) and the infinite loop errors. In
analytical demonstration and are often associated with numexigiven experiment, the total number of these errors is calles
cal simulations. It is in this unsatisfactory context that we haERR=pg.
chosen to conduct numerical simulations to determine optimalFor one noise realization, when the HLSVD method does no
practical values of the HLSVD parameters to be used for fastimerically break down, two criteria were used to estimate it
automated processing of human brain proton spectra. quality. The first one dealt with the accuracy of the decompo-
sition. The HLSVD program calculates, in the time domain,
the root mean square (RMSsvp) between the model signal
and the reconstructed signal. If the decomposition proposed b
Optimal values ofK, N, and M have been determined byHLSVD method is absolutely exact, then the given RM$p
computer simulation. A tool for numerical simulation has bees equal to the standard deviation of the time noise. If this is no
developed using IDL language (Interactive Data Language Rbe case, there is a difference between the given model and tt

Numerical Simulation with the HLSVD Method
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FIG.4. Effects of two sets of HLSVD parameters on the extent of residual water signal removal. A shows the spectrunyef@ddstructed with FlRaters
(a = 45), FIDnetanolitedefined in Table 14 = 1), and one noise realizatioa (< 0.025). B shows the spectrum of Rlghnstruc@nd the spectrum of the residae
FIDmetabolite— FIDreconstruct Obtained withM = 320,N = 512, andK = 25, conducting to RM@construct= 8%. C shows the spectrum of Flddonstruciand the
spectrum of the residue FIDmetabolite— FIDreconstruct Obtained withM = 320,N = 512, andK = 10, conducting to RM@construct= 29%.
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decomposition given by the HLSVD method. Itis relevant (i) to e 0.005< o < 0.05 (arbitrary units), where is the standard
assume that there is no correlation between this difference afebiation of the white gaussian noise.
the noise and (ii) to choose that the threshold of the RMS OfThe results are presented below as values gf#T. and of
this difference be inferior to the size of the standard deviati%gMSr fidde
of the noise. Then, the threshold of RMSyp is equal to the econstruct
square root of 2 multiplied by (the standard deviation of the
time noise). Finally, if RM§ svp exceeds 1.5 o (where 1.5
is the approximate square root of 2), the global decompositionThe first step consisted of evaluating the importance of priol
is rejected and the process is counted as an error of threshaidwledge oK. In anin vivohuman brain proton FID signal, the
(ERRreshoid- number of components of the residual water is not exactly knowi
Because our main interest was focused on the accurate mascause of the effects of the saturation pulses. Then, the numb
surement of metabolite concentrations, a second criterion widdotal components of the FID signal (watermetabolites) is
used in the frequency domain and refers to the accuracy of that perfectly determined. Values &f were varied from 10 to
residual water signal removal under the spectrum of metabolitds. Figure 5 presents the results obtained Wth- 512, M =
This criterion has been defined from the RM&structdefined 320,« = 45, 8=1,0 =0.025. For each water sighak 6to 10)
as the averaged value of the RM§nstructdecreased and reached

Optimization of K

N\ 2
Z |rec0ns!ruc(])
Zi=1 (1 BI0) )

RM Sreconstruth [4]

Z ’ i
100 gezem-BMegzco ooy
where [ “:33:5;*:55 | RSN
% | i RO

e Zisthe number of different regions selected on the metabo- 5 IR
lite spectrum (SPEetanoiitd; 0 80 f NS

e lreconstrud j ) is the area of thigh region after Fourier trans- g ‘ AN
form of the signal FIRconstruct= FIDmodei— FIDyatefnLsvo: S70 [ A
where FIQ,../usvp IS the residual water signal reconstructed = i ]
with the HLSVD method; and 60 [ by

e I(j)is the area of th¢gh region after Fourier transform of C
the metabolite signa x FIDmetabolite 50 | 5

Areas are estimated using a numerical integration inthefre- 40 b i vt .?‘
quency domain. 10 15 20 25 30 35 40 45

For one noise realization, if the HLSVD method does not K
break down and if RM&_ svp does not exceed 1.6 o, then the
RMSieconstruciS calculated. For one experiment gldgel = 100), 35‘;' R L L B B
the number of calculated RMSonstruciS given by 2 i}

|Tva|idate: |Tmodel_ (ERRFPE+ ERthesholt)- [5] 9 25 F \\‘

A typical result of one realization of residual water signal ;
suppression is shown in Fig. 4 with different values of HLSVD *§ 2 i |
parameters. g 15 I

(%] s A
RESULTS AND DISCUSSION £ 10— , -
. . s \\1::—3‘5---:*::”: w

In order to determine the optimal valueskfN, andM pa- 5 > *-o s
rameters providing the best conditions for residual water signal S HRRRREL SEERh SEEEE SRR TELEl |
removal from human brain proton MR spectra, a four-step study R e et
was conducted using the Riigue signal (Eq. [2]) with the fol- 5 20 % ‘ 3 3B 40 45
lowing conditions:

e o = 45 andi = 110 15 for FIDyatex; FIG. 5. ITvalidate aNd RMSeconstructas a function of the number of expo-

. . nentially damped sinusoid$. Results are displayed as a curve of averaged
* 0.5 < g < 2.5 and FlDhetahoiite With 19 exponentially  Rus,¢consuucof water FiDyaeri . (i = 6 to 10) )& = 45,8 = 1, ando = 0.025,
damped sinusoids (Table 1); obtained withN = 512 andM = 320.
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nearly steady state whdft became greater than 30, but fromand with 64< M < 448. Figure 6B presents the results with
K = 35, ITyaidate decreased dramatically. N = 1024 (all the points of the FlRyqe) and 128< M < 896.
Considering all results with the FRqe defined byo = 45, Figure 6 shows that the choice of the Hankel matrix size in the
(i=1to 15),8 = 1, ando = 0.025, obtained wittN = 512 HLSVD method is then critical. Previous studi&®( 23 have
andM = 320, the value oK which maximizes [Tai4ate and advocated not to use all the data points, particularly the las
minimizes the RM&constructWas ca. 25. In the literature, thepoints that bring in more noise. For acceptablgldate Values,
recommended value 8fmust be close to the model order valuethe range of the choice &l was larger usindN = Ngyata than
This rule may be extended to simulated human brain proton MRINngN = Nga5/2, but in contrast, the latter case gave always
spectra acquired at short echo time. Then,ifovivo human a better RMQconstruct FOr example, if 1Tajigate SUperior to 90%
brain proton MR spectrd = 25 constitutes a good choice forwas selected, then f&t = 512, the RMS%constructvere inferior
the use of the HLSVD method. to 5% whenM = 192 to 320 (Fig. 6A); forN = 1024, the
RMSieconstructvere only inferior to 15% wheM = 256 to 744
(Fig. 6B). Then, in our model signal, the HLSVD method does
not break down on a larger range Mf values, when all data
Second, with the FIRqgeidefined byy =45,i=1t0158=1, points are included, but gives a worse removal of water signe
o =0.025, anK = 25, the importance of the Hankel matrix sizainder the metabolite signals.
was evaluated. The results are presented as the distribution ddecause our interest was to minimize RMShstruct the fol-
ITvaiidate @nd the distribution of averaged RM&nstucobtained lowing optimal values of HLSVD parameters were selectec
for each residual water signak 1 to 15). Figure 6A presents thefor subsequent optimizatiodl = 512, 192< M < 320, and
results withN = 512 (the first half of the points of the FlRge) K = 25.

Optimization of the Hankel Matrix Size

100 S e ey p—— 100 T [ ',_‘r_",—‘l'—,_‘_ r ! T
== [ 17 = |
—o
80 80 H H
o )
60 280 i
= E
= 40 40
20 T 8 I 20 H
T L
0 | | | | | | 0 ! ! ! ! ! !
64 128 192 257 320 372 448 128 256 384 513 640 744 896
(A) M (B) M
25 [ T T T T T T ] 25 [ T T T T T T
20 [ 20
S S T
=15 =15 | T
»w 10 T » 10
14 T [i'q
5 T T _ T 5 i
oL | P B b B ol L =t * L L L
64 128 192 257 320 372 448 128 256 384 513 640 744 896
M M

FIG. 6. ITyalidate and RMSeconstruct@s @ function oM. Results are displayed as a box plot distribution (5th, 25th, 50th (median), 75th, and 95th percent
and outlier points) of ITalidate and averaged RM&onstrucifor each FIQateri, (i = 1 to 15), fora = 45, 8 = 1, ando = 0.025, obtained wittN = 512 (A),N =
1024 (B), anK = 25.
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Influence of Residual Water Signal to Metabolite Signal Ratio If a value of RMSeconstrucl€SS than 5% was selected, the best

Third, using the above parameters, the influence of the rai%sults were obtained with superior to 1 andil = 320. Then,

between the amplitude factow (= 45) of the residual water or a standard noisax(= 0.025), an acceptable performance

. 0, i
signal and the amplitude factor (0558 < 2.5) of the metabolite (IMvaidate > 90%) of the HLSVD method was obtained for data

signal, fori = 1to 15 andr = 0.025, was evaluated. The range 0¥V'th («/p) ratio inferior to 45.

the ratio ¢/B) was in accordance with the variations observe
in vivo.

The results are presented as the distribution of averagedrourth, with the FIQ,oq4e defined bya = 45,1 = 1 to 15,
RMSeconstruciobtained for each water signak€ 1 to 15) versus g = 1, and withN = 512,M = 320,K = 25, the influence of the
B, the amplitude factor of metabolite. Figure 7 presents the itandard deviatioa of the noise in the range of 0.005 (arbitrary
sults forN = 512 andM = 192 (Fig. 7A) orM = 257 (Fig. 7B) units) to 0.05 (arbitrary units) was evaluated. Figure 8 present
or M = 320 (Fig. 7C). In these three cases,lifaie was always the distribution of the averaged RM&nsirucobtained for each
superior to 90%. It can be observed that the RM&stuctde- water signali(= 1 to 15) versus values. T jigate Was always
creased when the metabolite signals increased with respecsuperior to 90% for any noise level in the selected raimgeiyo

ﬁjnfluence of Signal-to-Noise Ratio

the water signal. range). The good performance of the HLSVD method did not
25 [ T T T T i 25 [ T T [e) T T
_ (A) ] : (B)
20 20
515 >~ 15 b
5 g o
w10 [ 0® 10 [
s L L
x I z T
r T
5 H T 5 H
= - g =
0 J_ L - ! T | — ol - 1 1 1 %
0.5 1 1.5 2 2.5 0.5 1 1.5 2 25
B B
25 r T 1
z (© |
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S ]
T, 15
®" 10 [ ]
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B

FIG. 7. RMSeconstructas a function of amplitude factgr of the metabolite signal. Results are displayed as a box plot distribution (5th, 25th, 50th (medial
75th, and 95th percentiles and outlier points) of the averagedRMSrucfor each FIQuateri, (i = 1 to 15), fore = 45, ando = 0.025, obtained witiN = 512,
M = 192 (A),M = 257 (B),M = 320 (C), andK = 25.
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100 as well as a metabolite signal, have been modeled by appropria

T T T T T T T T T T
I decompositions in order to simulate actiralivo spectra.
The HLSVD method is based on the choice of three parame
9% I T I l B A R R

ters defining the order modkland the sizeN — M + 1) x M of
the Hankel matrix. The valuk = 25 appears to be an optimal

90 choice forin vivo human brain proton MR spectrum at short
g [° echo times. The optimal values bf and M parameters were
? N = 512 withM parameter chosen between 192 and 320 to ob
— 85

tain the best compromise between the minimum Ri¥Struct

i i and maximum Jjidate

8oL 1 On a large series of simulated MRS signals, optimal value
i : of K, N, andM parameters have been determined. This set o
- values significantly improves the removal of residual water sig:

75l 0 0 0 0 0 0 1 ] nal in brain proton spectra. Under these optimized conditions

0.005 0010 0020 0030 0040 0050 the HLSVD method is robust (| Figae> 90%) and can be fully
00075 0.015 0'225 0.035 0045 automated to obtain fast water removal on acimaivo human
o5 brain spectra acquired at short echo times.
T T T T T T T T T T
i o -
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